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GEODESICS ON AN EQUIPOIIENTIAL SURFACE m  REVOLUTION^ 
Walter ~ ~ ~ . e i n ~  

Abstract.--An equipotential surface of revolution is propagated as a 
reference surface for a worldwide geodetic system. A trigonometry--using 
geodesics as surface curves--is briefly outlined, and the geodetic appli- 
cations m given in the most important cases. The developments are valid 
for any le- of the ge-sics cut- used for "long lines" on an 
e l l ipso id  of revolution. 

The figure of the E a r t h  is usually identified with the geometrical 
structure of a certain equipotential surf'ace of the gravity field., called 
the geoid. In geodesy this geoid is used as a reference surface for geo- 
detic measurements, but in numerical computations, an easier manipulating 
surface such as a sphere or an ellipsoid of revolution, is usually sub- 
stit- for the geoid. 
f i l l  two major conditions: 

Hence these latter reference surfaces must ful-  

1) 'Ihey must represent the mean structure of the geoid i n  an area 

2) 

under consideration as w e l l  as possible, and 

 hey must allow a simple  computation procedure men geodesics 
are used as surface curves. 

In this paper we investigate a reference surf'ace that not only ful- 
fills the above conditions but also mars some characteristics that make 
it especially suitable for iorldwide geodetic systems. A- 

h i s  work was supported i n  part by grant NsG 87-60 from the National 
Aeronauties and Space Administration.. 

2Smithsonian Astrophysical Cbservatory, Cambridge, bhssachusetts . 
, 
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A. The Equipotential Surface of Revolution 

I -2 - 

We assume f o r  the moment tha t  our surface of revolution i s  zonewise 
monotonous and steadi ly  curved. 
scribed by Clairaut ' s  equation 

Then the behavior of a geodesic is  de- 

p s i n  A = const., (1) 

which means that i n  each point of the surface the product of the pa ra l l e l  
radius p and the sine of the azimuth A of a geodesic is  constant and equal 
along its whole run. Let us specialize the radius of the revolution sur- 
face t o  be the curve locus in which  the mean of the geopotential--around 
each la t i tude  circle--becomes ident ica l  w i t h  the potent ia l  of the geoid. 
Then the obtained equipotential  surface of revolution represents the mean 
s t ructure  of the whole geoid, and the radii toward the north and south 
poles become equal t o  the corresponding radii of the geoid i f  we put the 
coordina.te origin in to  the gravity center of the E a r t h .  

Approximating the geopotential function of the gravity f i e l d  of the 
E a r t h  in the following form: 

with 
a = equatorial  ( maximum pa ra l l e l )  radius 

PI =product of the ma66 of the E a r t h  wlth the gravi ta t ional  
constant 

(JI =angular velocity of the E a r t h  

r = geocentric radius, i .e ., the distance from the gravity 
center t o  a point i n  the free space 

B = geocentric la t i tude,  i.e., the complement of the angle 
that i s  included by r and the rotat ion axis  of the E a r t h  

A =longitude, i.e., the angle between a meridian plane through 
r and an a r b i t r a r i l y  fixed meridian plane (Greenwich) 

=hEtrmoniC coefficient6 

=Legendre's associated function prim 



and 

8 

m drnPn(sin B) 
Pm(sin e )  = cos e 

d(sin e)" 
m e n  

k 

( 3 )  

(4) 

then we obtain the mean potent ia l  along a latitude c i rc le  

or by putting 

+e 2 cos2fl}dh , 

if = v = const. 

pn0 = pn (Legendre I s  coefficient ) 

( 5 )  

This last equation already includes our reference surface i n  ques-ion. 
To pick it out among the other equipotential surfaces w e  have t o  give one 
of the follciwing: 

1) i ts  geopotential V; or 

2) 

3)  
the gravity e i ther  i n  the equator or  i n  a cer ta in  latitude; or 

the (pa ra l l e l )  radius i n  the equator or i n  a cer ta in  latitude. 

The values of the gravity or  the (para l le l )  radius are understood here as 
mean values along a cer ta in  lati tude c i r c l e  according t o  our previous 
def ini t ion of the equipotential surf ace of revolution. 
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For practical  reasons the f i r s t  point must be excluded because the 
But potential. of the geoid cannot be d i rec t ly  measured on i t s  surface. 

the second and t h i r d  possibi l i ty  can be w e 1 1  realized either by pendulum 
measurements o r  by distance and angle measurements along the equator o r  a 
la t i tude  circle  f o r  example. 

In the next section we t r e a t  point 3 f i rs t  t o  the extent t ha t  hand- 
l i ng  of points 2 and 3 becomes equal for  fur ther  developments. 
stage we outline b r i e f ly  the procedure when the gravity is  given. 

In t h i s  

B. Eauation of the h r i d i a n  C u r v e  

A revolution surface i s  completely described by i t s  meridian curve. 
TT Tr - 
2 2 Because equation (6)  i s  continuous i n  r within the in te rva l  - - 5 

we can always uniformly approximate the meridian curve--in the same in t e r -  
val--by polynomials (Weierstrass's approximation theorem). 

1. Equation of the meridian curve i n  polar coordinates, w i t h  the or igin 
in the gravity center. 

We canstmet  the meridian 
curve in the exp l i c i t  form: 

Fig. 1 

and develop (7) formally in to  a 
polynomial of degree R:* 

Introducing (8) together w i t h  (4 )  
i n to  (6)  i n  the s l i gh t ly  changed 
form : 

we obtain the unknown coefficients r .  by comparison of the terms having 
the same power of s i n  B. 

1 
This can be simplified by making use of a ser ies  

*- 
M depends on the intended numerical accuracy. 
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development 

which is convergent for 

ard any value of j. In general we obtain 

or, for  example, the f irst  f e w  terms f o r  
about 3 digits : 

= 4, = 8 and an accuracy of 

'1 

. . . . . . . . . . . *  

We may mention that in (11) the potential V i s  still  unknown. 
computation is given i n  section 3 . A method of 

We now discuss the assumptions made in chapter A about the monotony 
and curvature of the surface of revolution. 
that, in geodetic application, the meridian curve i s  monotonous between 

From equation (8) follows 

and 

while the curvature is  steady overthe m o l e  interval 



The l a s t  resul t  derives from the convergence and steadiness of the second 
derivatives of ( 8 ) ,  taken along the meridian curve. A s  a r e su l t  the d i f -  
f e ren t i a l  equations of the geodesic i n  chapter C can be integrated on the 
m o l e  surface without any res t r ic t ions  

2. The geographic la t i tude B as a‘function of the geocentric la t i tude  B, 
and vice versa. 

The relat ion i n  question 

c a n  be easi ly  derived from figure 1: 

r s i n  B - cos B 
s i n  B = - 9  

which leads, together w i t h  

and 

i-lg dr = a  cos B i r s i n  3 i 
i =1 

i =O \ i = o  / 

t o  the equation m 

i 
s i n  B = s in  B + bi s i n  e 

i = O  

-6 - 
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Because the power series i n  sin 8 is convergent in the interval 

( i t  i s  also absolutely and uniformly convergent therein) the sum of the - 
coefficients b. i s  zero or, i n  detail: 

1 

OD 

i = O  
OD 
? 

= o  L b2i 
i = O  

= o .  L b 2 i + 1  
i = O  

The last t w o  resul,s can be derived f r o m  (IS), b.,ich -5 valil 
and negative values of the geocentric latitude. 

for positive 

As an example we mention again the explicit expressions of the first 

i 
few coefficients b 

- bo - - r + ... 1 

. . e . . * . *  . . . . . .  
w i t h  

( X o % O )  

=a1 + 4r r + ... "1 1 2  
2 x = 2r2 + 4r2 + ... 2 I 
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The geocentric la t i tude B can be exp l i c i t l y  computed as a function of 
the geographic la t i tude B by inversion of equation (18): 

m I 
i s i n  B = s in  B + ci s i n  B . 

i = O  . 
This ser ies  i s  convergent within the in te rva l  (Knopp, 1922) 

Similarly t o  equation (19)) we find: 
00 L c i = o  

i = O  
m 

T- 
O L ‘2i = 

whereas the f irst  few coefficients ci read: 

c =Ci(cd c1 ... c i -1’ i 

or 

-8 - 

c = - b  + .  
0 0 

c1 = - l+bl+. bl . . 
(b2 + 2 b  c c = - -  + 3 b  c ) - b .  . . 1 

2 1 +bl 2 1  3 0  

. . .  - - 
c3 
. . . . . . . . . . .  0 .  

(23) 



If we put B = 0 i n  equation (22) ,  we obtain the geocentric la t i tude  
for the equatorial  curve e 

s in  Be = c . 
0 

This result can be interpreted as a disphcement of the gravity center of 
the equipotential  surface of revolution re la t ive  t o  the equatorial  plane. 
The distance i n  direct ion of the axis of ro ta t ion  is  therefore: 

h = a  t g  Pe 

3.  The potent ia l  of the revolution surface, when the equatorial  
(mral le l )  radius is  known. 

A l l  the previous calculations depend in one way or another on the 
not-yet-known geopotential V. 
o r  equations ( 6 j  and (27j. 

This value can be computed w i t h  the help 
Putting B = Be we obtain 

The only unknown i n  the above equation i s  now the geopotential i n  question. 
For numerical computations we obtain it with an accuracy up t o  10 digi ts :  

+ .  . . ( N = 4 ) .  (30) >” 
An expl ic i t  solution of any desired accuracy can be obtained by 

inser t ing (29) in to  equation (8): 

*by numerical i t e ra t ion  w e  may get any accurcy. 

-Y - 



c1 
Va and developing (31) into a power ser ies  of - : 

1 = 1 Vi ($-Ii 
i=l 

An inversion of ( 3 2 )  leads t o  the value 

Va i 
i =O 

and hence t o  the geopotential V : 

(33) 

(34) P 1  v = -  - *  

a L L i  
i = O  

4. Equation of the meridian curve when the gravity i s  known. 

The procedure i s  very similar t o  those discussed i n  the previous 
sections. 
the gravity value g i n  the geocentric la t i tude B: 

Starting from equation ( 6 )  we obtain by p a r t i a l  different ia t ions 



1 .  

As i n  section 1 we construct--with the help of equation (35)--an expression 

continue formally up t o  equation (34). If B i s  called the geographical 
la t i tude  in which the gravity g is  Imown, w e  obtain the corresponding geo- 
cent r ic  la t i tude  by: 

m 

wherein the coefficients c. axe functions of the unknown equatorial  radius 

a. By introducing equation ( 
( 3 5 )  we can compute w i t h  8 = i? the equator ia l  radius i n  question. The 

1 
) into ( 3 8 )  and the r e su l t  in to  equation 

prcjce&jps w e  maiogo-usiy rue s a w  as a-ueady- ~escl-;&.&* 

5. Transformation of  the geocentric equations t o  the equatorial  system. 

A l l  the previous equations re la te  t o  a coordinate system w i t h  i t s  
or igin 0 i n  the gravity center. 
constant t e r m  such as ro, bo, co, which can be removed by a transformation 

t o  the equatorial  system: 

A s  a re su l t  there usually appears a 

Z, z 
t 

w i t h  

- 
z = Z + h  

- 
P = P  

s i n  B = - j  Z r - - Jn p + z  r 

Inserting (40) and (41) i n  
equation (8) we obtain, by 
observing (42), (43) and 

(42) 

(43 1 

t 
Fig. 2 
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an expression similar t o  equation (8) but without a constant term: 

03 

R = a (. + i 2 R i  sinicp) . 
\ 03 / 

i = 2  

The coefficient R of s i n  'p i n  the above equat ionalso becomes zero, 

which can immediately be seen from equation (14).  
mention again the first f e w  expressions of R i . *  

1 
A s  an example we 

R g = r  + .  . . 
R = r  + 2 r 2 i + .  . . 
R4 = r 4  + .  . . 

2 

3 3  

. . . . . . . . . .  
Corresponding equations can be obtained f o r  (18) and (22) i f  we 

subs t i tu te  R instead of r i n  the equations under consideration: 

(45) 

w i t h  

and 

w i t h  

m 

s i n  B = s i n  'p + i;, sinicp 

i=l 
(47) 

i=l , 

03 

i s i n  (P = sin B + s i n  B 

i =1 
c 1 = o , e t c .  
i=l 

-12 - 



However, the difference against the former developments i s  that R is now 
an infinite series. Using the following expressions (Ryshik and Gradstein, 
1957): 

division of power series:  
W 

- -1 i 

i = o  
n i x  

i = O  

m O  
W 

i 

i =O 

(49) 

p g e r s  Cf p?er series: 

i ( mi X j  

= i n x ( k  any natural number) i 
i =o i=o  (50) 

multiplication of parer series: 
W W 

w i t h  

1 ( i k -  j + i )  mi nj-i ; 

i=1 

i =1 i =1 i =1 

we get the coefficients Gi and Gi: 
h 

bl = -2R2 + . . . 
b2 = -3R -k . n 

3 
g =  . . . .  

3 
. e . . . . . . .  . 

-13 - 
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and 

o r  

- 1  A . c I  

i -1 c = Ci(C1, c2, 0.*.C i 

b, + . . .  CI c = -  
1 1 +'bl 

u2 (1 + 2Z1) + n c = -  . . .  
2 (53) 

- c =  . . .  
3 
. . . . . . . . . . .  

In order t o  obtain the radius R as a function of the geographic 
la t i tude  B, we inser t  equation (48) in to  (45) and, considering the formula 
fo r  substi tution of one power series i n to  another (Ryshik and Gradstein, 
1957) , 

OD (0 W 

i=l i =1 i =1 

whereby 
nl = alml 

2 n = A m  + A m  
2 2 1  1 2  

= A  + 2 ~ ~ m  + ~ 3 m  n3 3ml 1 2 2  1 3  
. . . . . . . . . .  

we get 

W 

R = a  (I. + 1 A, s i n  

i = 2  

a z.c^ 
i i 

q z R i  

n r R i  
i -  
i 

According t o  o w  former equations the in te rva l  of convergence is  
again : 

and 

(55) 

-14 - 
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6 .  The pa ra l l e l  radius p as a function of the geographic la t i tude  B. 

From f igure 2 w e  learn 
W 

(57) 2 2 2  p = R  cos CP = a 2  

Hence w i t h  the help of (48) together w i t h  (50) and (51) we obtain the 
expression in question 

i 2 (E) =1+ 1 p i s i n  B 

i=2 
W a3 0)  w i t h  

=-I; I> pgi =-I; 1 P2i+l = 0 ,  1 pi 
i =1 i =1 i = 2  

and, f o r  example, 

a a . a .  . . 0 . a . . a  

A slight change of (58) leads to 

W i t h  m m m 

i = o  i=o  i = o  

-15 - 



The f i rs t  few coefficients are 

- 1  
91 - -qP3 - i ( l + p  )p - . . . 

2 3  
q 2 = .  . . 

By inversion of (60) we obtain the geographic la t i tude  B as a 
function of q; 

w i t h  

al 

i + northern he m i  s phe re  - southern hemisphere 

OD 

-r 

J '  L i = o  - / 

OD 

r 
OD 

'c l ei = 0 ;  l e2i = 0;  1 e2i+1 = 0 ;  
i =o i = o  i = o  

m e n  
e = e ( e , e  . .  . e  1 i i o 1  i-1 1 o r  

i '  e = - qo/(l+qo) + 
0 

e =-/(l+qo) 91 + . 
p2 

. . . . . . . . .  
and w i t h  (49) we f i n a l l y  get the expression: 

\ - southern hemisphere 
1 + northern hemisphere 

-16 - 
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v2 -"3 - + 2 x 5 + 3 x 7 + - ~  
v4 = x 5  '3- + .  

- 
v 6 - '  

2 x = - e  + 2 e e  - 3e0e2 + . . . 
x, = -eq + 2e-e- + 2e.e- + . . . 

3 0 3  Liz :  

2 2 

- 3 
x 4 - .  0 0 

In this form equation (64) w i l l  be used for  the integration of the d i f -  
f e ren t i a l  equations in the next chapter. 
equations (58) and (62) is  

m e  in te rva l  of convergence of 

and 

O S q S l  

-17- 



C. The Fundamental Formulasof a Geodesic on an Equipotential Surface 
of Revolution. 

1. Different ia l  equations of the g e d e s i c .  

In t h i s  section w e  br i e f ly  outline the derivations of the d i f f e ren t i a l  
equations of geodesics on surfaces of revolution (KGhnlein, 1962). 

Star t ing w i t h  the in tegra l  formula of Gauss-Bonnet: 

JJ F(U,V) dF + $ k ( s )  ds = 2m,, 
o g  

mere in 
u, v = surface parameters 

K =Gaussian curvature i n  a surface point 
dF = surface element 

& 
3 
S 

kg length,, 

- 

= simply connected region on the surface 

= boundary curve of &, s teadi ly  curved and without 

= curve length as a parameter of % 
= geodesic curvature of % as  a function of the curve 

double points 

we obtain f o r  a d i f f e ren t i a l  t r iangle  

According t o  figure 3, we introduce on the surface of revolution a coor- 
dinate system B,L--with B as the geographic la t i tude  and L as the geo- 
graphic longitude--thereby cal l ing M the meridian radius and N the radius 
of the prime ver t ical .  The re la t ion  between p and N i s  given by the 

-18- 



theorem of bkusnier: I 

C I  

W e  are  considering now a geodesic tka t  
Xncludes w i t h  the meridian in  point 1 
the angle A1 (azimuth). I n  point 2 we 
compute the increase of the azimuth 
angle dA = A2 - A1 from (67) .  

I Fig. 3 
or 

kg dL = d A  

or 

$ k g p d L = 2 n -  j" COS B dB dL 

O B  p =const. 

Introducing (72) in to  (70) we get the first d i f f e ren t i a l  equation of a 
geodesic on surfaces of revolution: 

e = s i n  B . dL (73) 

The well-known equation of  Clairaut can be derived from the t r iangle  
1-2-3 i n  f igure 3 

-19 - 



Integration of (75) 

dp 
P 

f i n a l l y  leads t o  the expression 

p1 s i n  A = p s i n  A = p .  s i n  A i - - P m  (77)  1 2  2 1  

The product of the para l le l  radius p i 
geodesic i s  C O ~ S t a n t  i n  any point of a revolution surface and equal t o  the 
minimal pasal le l  radius p (A =z 3 .  

and the sine of the azimuth Ai of a 

m m 2  

The second d i f f e ren t i a l  equation can be derived again from figure 3 . :  

P dL s i n  A = - as ’ 
or  w i t h  (73) 

ds - P 
dA s i n  A s i n  B 
- -  

2. Internation of the d i f f e ren t i a l  eauations. 

(79)  

In  order t o  get  the difference AL of  the geographic longitude of a 
geodesic between two points--with para l le l  r a d i i  p and p respectively-- 
we different ia te  ( 77) ~ 

1 2 

and introduce it Snta (n) 

and s i m i l a r l y  we proceed t o  obtain the length of the geodesic between the 
said points *: 

-20 - 



Before we make use of the resu l t s  of equation ( a), we introduce f o r  Sake 
of simplification the equatorial  radius a as the uni t  of length. The 
formulas with the angle arguments remain unchanged mile the distances 
w i l l  be reduced t o  the said uni t .  

For equation (81) we now obtain: 

W 

I. + 
(-l)i u2i $3 p2 L K = L 2 - L 1 - - P m { L 1  - 

i=1 

and s imi la r ly ,  

1 
1 + L (-1)- u2i P--J 

OD 

r .i 31 

i=1 

. .  

The positive sign is  val id  f o r  the northern hemisphere, and the negative 
Sign is needed f o r  the southern hemisphere. 

If we use the abbreviations 

w e  can compute the above integrals by the recurrence formulas-: 

-21- 



w i t h  

and 

w i t h  

2 2 
1 2P - (1+P,) 

2 9 2 arc  cos 
1 - P, 

( l + P m )  2 2  P -2Pm 2 

2 2 ) >  arc cos 1 E=-- 2Pm P ( l - P m )  

1 
J $ ~ P  -3 + p 2 &  m 

(89 )  

( 9 0 )  

(91) 

J $ d p  =-(A) 1 

[k 7 dp =; 

5 + ? p m  2 2  (&)3 +p:& 5 

+ $ p2 ( & ) 5  + p 4 (&)3 + p6 Ji; 7 q m m 

. . . . . . . . . . . 
If the geographic la t i tude  B i s  fo r  some reason preferred as the variable 
instead of p, then the above formulas can eas i ly  be changed w i t h  the help 
of equation (58). 

3 .  Length of a meridian arc. 

The length of the meridian a rc  between two points w i t h  the para l le l  
r a d i i  p and p respectively follows from (84) by putting pm = 0. In  t h i s  1 2 
special  case we obtain: 

-22 - 



and 

with the recurrence formulas 

a r c  cos p , J ~ ’ = -  
2t+l 

2 t  +1 
spa (Ip =p . 

(94) 

(95 )  

We notice that GU is also obtained i n  the length unit  of the equator ia l  
radius 

4. Excess of a geodesic polar  tr iangle.  

The excess of a geodesic polar t r iangle  is  equal t o  the t o t a l  curva- 
tu re  of i t s  surface F. 
t ha t  one corner of the geodesic tr iangle (polar t r iangle)  coincides w i t h  
a surface pole, we obtain w i t h  equation (83) : 

It can be computed w i t h  the help of (66). Assuming 

Pole = JJ 1? dF = JJ cos B dl3 dL 

Fig. 4 LI 

a5 2 5  
L2 

= t (1 - s i n  B) dL 
T 

= L 2  - L +A1 - A2 1 

-23 - 



5. Surface area of a geodesic polar t r iangle .  

If ,$is again the region within a polar triangle, then we get i t s  
area 

and w i t h  the help of (64) 

00 1 

dL; 

(uo 1) . 
Introducing the expression--see equations (73) and (80) -- 

dP (99) dL =- a -  - - 'rn 1 
s i n  B Jn sin B P P P, 

m 00 

1 (-1li u2i P2i f v2i E q  dP , 
= - &-+ i =o i =1 

(Uo  = 1) 



we f ina l ly  obtain: 

i=l 

wzlerein the integrals 

m 0 

2( i+ l )  
P 

i=l - -  

can be computed with the recurrence formulas: 

Pm arc sin- 
P 

See also formulas (87) t o  (91) 

The area of either the northern or the southern hemisphere of the 
equipotential surface of revolution can be computed 
P1 = P2 z Pm = 1: 

2i+ j m i  

F 10, s =[ 
i=o  j=o 
m 1 

by equating 

+ north. hem. - south. hem. 
V 

i=l 

-25 - 



I 

and the area of the whole equipotential  surface is  therefore 

The resul ts  are obtained i n  the scale uni t  of the second power of 
the equatorial radius. 

I n  sections 4 and 5 we have considered 

corresponding r e su l t s  fo r  any geodesic 
t r iangle  o r  polygon on the revolution 
surface, we have only t o  dissolve the said 
figures in to  polar t r iangles  as shown f o r  
a t r iangle  i n  figure 5 .  

Pole only a geodesic polar t r iangle .  To obtain 

2 

1 
Fig. 5 

D. Application i n  Geodesy I 
1. The direct  and inverse geodetic problem. 

Most of the geodetic computation procedures i n  tr iangulation systems 
can be reduced t o  two major problems, the d i rec t  geodetic problem and the 
inverse geodetic problem, which may be interpreted as  special  cases of co- 
ordinate transformations within two geodesic polar coordinate systems 
(Graf, 1955; KGhnlein, 1962; KGhnlein, 1963). 

1.1. The direct  geodetic problems: 

I 

Assuming that we know the geographic 
la t i tude B1 and longitude L1 of point 1, then 

we can compute the coordinates B2,L2 of point 

2 i f  the length of the geodesic Sl2 

and i t s  azimuth A1 i n  point 1 are given. 

m Solution: The minimal para l le l  radius p 
can be obtained from equation (77) w i t h  
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w i t h  the help of ( 5 8 ) ;  

= p  s i n  A1 . Pm 1 

n 
s is the distance I 2  

If w e  write equation (84 )  i n  the shortened form 

then we find the unknown parallel radius p2 by developing (106) i n  a 
Taylor series of 6p 2 

m e r e i n  
6p2 is  the difference of a purely spherically computed pa ra l l e l  

rdiis i? '2 ana -- i+.c at-+.iial I---- .rrnliip .--- F ~ ;  

- - bP* - P2 

c. computed w i t h  pl, p2, pm and (841, and 

are the p a r t i a l  derivatives a l so  computed with the 
preliminary value i;, . 

~n inversion of equation (107) leads t o  

i =1 

and hence t o  
A 

= P2 + 6P2 Y p2 
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or, w i t h  (62), t o  B,, the geographic l a t i t ude  i n  question. 

of (77) we obtain the azimuth A2, 

With the help 
L 

9 
'm s i n  A = -  
p2 

and f ina l ly ,  w i t h  equation (83 ) ,  the difference &L of the geographic 
longitudes, or 

If w e  put i = 1 i n  equation (lO7), we obtain an i t e r a t i v e  solution as 
described i n  section 2 (geodesic polygons). 

1.2. The inverse geodetic problem: 
In this case we know the l a t i t ude  

and longitude B1,LI. and B 2 2  ,L of points 1 
and 2. The problem i s  t o  f ind  the azimuth 
A and A2 and the distance s12 between 

the two points. 
1 

Solution. A f t e r  computing p 

the help of ( 5 8 ) ,  we develop, s imilar ly  
t o  the previous problem where we used 
equation ( 83 ) , 

and p2 w i t h  1 

LI AL = L2 -L1 = a P 1 ,  P2, P,) (113 
Fig. 7 

i n t o  a Taylor series of 6pma 

6pm is  the difference of the purely spherically computed wherein 

minimal parallel radius Tm and i t s  ac tua l  value p, 

1 
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6Pm = P, 

t m  = sin 

An inversion of 

is the longitude difference computed w i t h  plYp2,Gm and (83), 
and 

are the par t ia l  derivatives mich are also computed with 5m0 

m 9' (114) leads t o  the unknown value 6p 

and hence t o  the minimal parallel  radius 

- 
Pm = Pm + 6Pm 

W i t h  (7'7) we obtain the azimuths and % j  

'm s i n  = - 
P1 

and 
- 'm 

p2 
s in  - - 9 

while the distance s can be computed w i t h  ( 8 4 )  : 12 

An i terat ive procedure --as applied in high-speed computer technique-- 
i S  outlined i n  the next section. 



2. Geodesic polygons ; 

A s  the d i rec t  and inverse geodetic problem has been reduced t o  a 
solution of a geodesic polar t r iangle ,  we may treat  the cases of coordinate 
transformations i n  geodesic coordinate systems, e t c  ., by reducing them t o  
the computation of  geodesic polygons. For example, a coordinate t rans-  
formation within two geodesic polar coordinate systems can be solved by 

within two oblique o r  rectangular geodesic coordinate systems can be solved 
by geodesic pentagons, e tc . ,  e t c  ., (KGhnlein, 1963). 

means of a geodesic t r iangle;  similarly,  the coordinate transformation \ 

For computing a geodesic polygon we must have 2n-3 angles a, and/or 

Pole 

Li- 1 

Fig. 8 

I 

sides s --n i s  the number of the 

corners--plus two addi t ional  para- 
meters. These two parameters--azi- 
muths o r  parallel radi i  e t c .  , --are 
necessary t o  f i x  the polygon on the 
surface because of the changing 
curvature along the meridian curves. 
Altogether we have 7 n parameters i n  

a n parallel rad i i  p n minimal 

pa ra l l e l  radii p , n azimuths m 

ii +1 

the polygon: n sides s ii+l.’ 

i’ i’ 

i i + l  
and n values i +1i n azimuths A 

If we l i k e  t o  compute a l l  
A i i + 1 7  

%i+l 
(excluding the already known values) 
of them we must have 5n +1 indepen- 
dent equations, which we write i n  
the shortened form: 

n equations (121) 

n equations (122) 

P. s in  Aii+l = s i n  Ai+li - 2n equations (123) 
1 - ’ m i i + l  

a = T r -  (*ii+l - A i i - 1  ) clockwise! n equations, (124) i 

wherein i = 1, 2, . . , n and n+l = 1 (succession of the corners clockwise), 
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and the polygon equation 

mii+l (Pi, P i+l '  pm ) = o  1 equation . (125) 
i f + l  

i =1 

0 

I 

Sometimes it is  possible t o  solve the equations ( l 2 l ) - ( U 5 )  d i r ec t ly  
by introducing the known values and computing i n  steps the values i n  
question. But i n  most cases we Cannot proceed i n  th i s  way. Writing the 
above equations in the general form 

f1(x1.. . xu... Xk) = 0 . . . .  . . . .  
fP(X1.. . XY'. . <) '= 'O 

. . . . . . . . . .  
f k ( X  l... Xu"' 5) = 0 y 

we can reduce the problem t o  the numerical computation of tne values 
xu ( V  = 1,2 . ..k) i n  (126), which shal l  be ident ical  w i t h  the unknowns 

i n  the geodesic polygon. 
values xu =xu - hxu , and break off a f t e r  the second term: 

W e  develop (126) by using Taylor series and the 
0 

0 0 0 0 0  0 
f (x + Ax1... xu + Axv*.. x + ax ) = fy(Xl . . .Xu. .  . 5) 

I J . 1  k k 

(127) 
k a f  0 0 + < ($...xu... x k ) k U  + Rp = 0 (P, u = 1 , 2  ... k )  , 

u=1  

0 
wherein xu are approximations of the exact values xu, and Ax,, are  small 

additive corrections. By equating R = 0 we c m  compute approximate 
values of dV : c1 
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w i t h  the square matrix 

I1 aJ1 = 

wherein 
and the determinant 

Repeating th i s  idea w i t h  the improved value 

1 0 0 
= xu + dv (instead of xu) , 

we get from (128) new corrections GU m i c h  lead a f t e r  

operations t o  any desired accuracy of the values i n  question. 

some ident ica l  

From equations(83) and (84) we can eas i ly  estimate the influence of 
the different terms i n  the f i n a l  r e su l t .  Hence it i s  suff ic ient  fo r  the 
above computation method t o  use i n  (129)  only the p a r t i a l  derivatives of 
the leading f i r s t  term such as:  



Q 

-- 1 JZ 
2 

1-P, P.-P, 1 

J. 

wherein p = s i n  A i+li - 

+i pi p-T 
aA,i+l=-pm pi -'m 

1f 

ii+l 
p, = pi s i n  A 

t t  - - 
i + l i  P, s i n  A 

t t  

ii+l p, = pi s i n  A 

The length u n i t  is again the semimajor axis a .  
0 In order t o  obtain approximate values xu for  the polygon, we use the 

spheroidal data i n  spherical formulas. 

solut ion i s  insufficient, we again obtain the values xu  by changing 

s l i g h t l y  one or  several of the data of the geodesic polygon. 
computations it i s  suff ic ient  t o  know Only good approximations of the 
coefficients i n  the matrix 11 a P u l  . This i s  especially important f o r  
prac t ica l  purposes because the matrix has not t o  be recomputed after each 
i t e r a t ion  step. 

If the condition f o r  a spherical  
0 

For numerical 

E. Conclusion 

Ttle zonal harmonics of the gravitational f i e l d  of the E a r t h  have 
been determined u n t i l  now from the motion of a r t i f i c i a l  satellites up t o  
degree nine (twelve) (Izsak, 1963; Kaula, 1963; King-Hele, 
1963; Kozai, 1962; e tc . ) .  However, the revolution surface derived from 
these values does not exactly agree w i t h  the revolution surface derived 
from the actual  geoid. But the degree of approximation i s  f a i r l y  good, 
because the oceans, as part  of the actual geoid, cover about 70.8 percent 
of the E a r t h ' s  surface. A solution of higher accuracy w e  can get only i f  
we have enough gravity measurements uniformly dis t r ibuted over the m o l e  
world. 
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